Score-based models with SDEs

01 _<

Adding noise fills up low-density regions

But why “hardcode” to 6y, 05, .. .?

o .o.. s e
s 00l o
%% % °

e ':.-'i. t".‘l-\. °
...c ..o’. ° G
..: L 4

With infinite noise scales, we can have _ —

* Higher quality samples
» Exact log-likelihood computation
* Controllable generation with inverse problem solving

A stochastic process defines a process of generating infinite noise scales

Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, B. Poole, Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2019

E. Gavves Score-matching & Diffusion Generative Models http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Stochastic processes via SDEs

» Stochastic processes as solutions of stochastic differential equations

dx = f(x, Hdt+e()dw, f(-,1): R4 - R% g €|

* Change in our RV governed by a function of RV and time (drift) plus
whose scale is a function of time (diffusion)

W is Brownian motion, dw is infinitesimal white noise (Gaussian distribution)

E. Gavves http://uvadl2c.qithub.io

http://uvadl2c.github.io

Solutions to SDEs

» SDEs usually solved with numerical methods (x,. ; = X, + .. .) over small time steps

 Solutions of SDEs are stochastic RVs {x(7) } — trajectories over time

t€|0,T]

 The pdf of x(7) is p,(x) (like p(,i(x) for the discrete case)

* po(X) means the distribution in the data space, i.e., py(X) = p(X)

* pr(X) is the distribution after all the noising up for period 7T until we end up to our
prior distribution for our data generation process, i.e., pp(X) = (X)

E. Gavves Score-matching & Diffusion Generative Models http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Perturbing data with noise from SDEs

In score-matching the SDE is the generalisation of the finite scaling oy, . . ., 67

In the discrete case perturb with a handpicked (geometric) progression of scales

Now, noise scale controlled by SDE, where we (manually) select the governing SDE

If dx = ¢'dw, our Gaussian noise dw grows exponentially with time

E. Gavves

Score-matching & Diffusion Generative Models

http:

uvadl2c.qithub.io

http://uvadl2c.github.io

What SDE?

* Noise-conditional score-matching (the discrete case)
-

do(t
X; =X;_ | +1/0f — 6 Z;_ 1:>dx—\ Gdt()dw

* Another SDE that worked pretty well

dx = — %ﬁ(t)x dr + \ ﬁ(t)(l — exp(—2J ﬁ(s)ds)) dw
0

* Might look scary but we merely need to pass it to our numerical solver

E. Gavves Score-matching & Diffusion Generative Models http://uvad|2c.qgithub.io

http://uvadl2c.github.io

From data to SDE noise

We pick a sample x from p, . (x), €.g., an image from our training set

We add again and again noise until data looks like a standard Gaussian 7z(x)

We can always make noise from data

Million dollar question: can we make data from noise (reverse process)?

—— Stochastic process

E. Gavves

p://uvad|?c.github.io

http://uvadl2c.github.io

From reverse SDE noise to data

* For any SDE there is a reverse SDE with the reverse trajectories

dx = |f(x, 1) — g% V. logp(x)|dt + g(r)dw

» For the reverse SDE we need precisely the score function of p,(x)
Forward SDE (data — noise)

@ dx = f(x,t)dt + g(t)dw

- ?

e

Reverse SDE (noise — data)

E. Gavves http://uvadl2c.qithub.io

http://uvadl2c.github.io

Learning the reverse SDE

dx = [f(x,1) = £%(0) V,Jlog p,(x)|dt + g(1)dw

A neural network approximates the score function

Take an initial sample from the prior distribution X(7") ~ 7(X)

Solve reverse SDE to get x(7), V¢ € (T,0] till model matches data distribution p, = p,

With A(f) = g2(¢) we have

KL(po(X) [l pp(X))) <

—t~%(0,T)

2

_x~pt(x)l VXIngt(X) o SQ(X)]'l'KL(pT(X)Hﬂ(X)))

2

With perfect score-matching, matching the prior implies approximating data distribution

E. Gavves

Score-matching & Diffusion Generative Models

http:

uvadl2c.qithub.io

http://uvadl2c.github.io

* Train a neural network for score-matching that depends on time

where typically A(7) < 1/

Time-dependent score-matching

—rc%(0,T)

0|40

V_ logp,(x|x,) — sy(X, 1)

- [H Vxplog p(x() | x(0)) H%]

* Randomly sample time steps

* Then sample data from training set

* Then optimise your score matching approximation

E. Gavves

Score-matching & Diffusion Generative Models

2

2

|

http://uvad|2c.qgithub.io

http://uvadl2c.github.io

Solving the reverse SDE

Once we have trained the score-matching function, we can solve the reverse SDE

from the prior 7 all the way to our data distribution p, to generate new data

Solving means running numerical solver to compute the trajectory (like a decoder)

We solve the SDE (getting the trajectory) for each new sample

AX — lf(x, N — g2()sy(x, t)] At + g(0\/TAI 2,0 2, ~ N(O.])

X «— X + AX
t — t+ At

With better sampling procedures and architectures — SoTA generation

E. Gavves

Score-matching & Diffusion Generative Models

http:

uvadl2c.qithub.io

http://uvadl2c.github.io

Probability flow ODE

* With Langevin MCMC samplers and SDE solvers we can’t get exact log-likelihoods

* We can convert the SDE to a corresponding “probability flow” ODE without
changing the marginal distributions {p,(X) },c(0.7

dx = |(x,1) - g%(1) Vylog p,(0 | dt

* Solving the ODE, we get the exact log-likelihood

Forward SDE P

E. Gavves http://uvadl2c.qithub.io

http://uvadl2c.github.io

ualitative examples

f% @‘ég_guuml@g,

E. Gavves Score-matching & Diffusion Generative Models http://uvad|2c.github.io

http://uvadl2c.github.io

