
E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Score-based models with SDEs

• Adding noise fills up low-density regions


• But why “hardcode” to ?


• With infinite noise scales, we can have


• Higher quality samples


• Exact log-likelihood computation


• Controllable generation with inverse problem solving


• A stochastic process defines a process of generating infinite noise scales

σ1, σ2, . . .

Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, B. Poole, Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2019

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Stochastic processes via SDEs

• Stochastic processes as solutions of stochastic differential equations





• Change in our RV governed by a function of RV and time (drift) plus noise 
whose scale is a function of time (diffusion)


•  is Brownian motion,  is infinitesimal white noise (Gaussian distribution)

dx = f(x, t)dt+g(t)dw, f( ⋅ , t) : ℝd → ℝd, g ∈ ℝ

w dw

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Solutions to SDEs

• SDEs usually solved with numerical methods ( ) over small time steps


• Solutions of SDEs are stochastic RVs   trajectories over time


• The pdf of  is  (like  for the discrete case)


•  means the distribution in the data space, i.e., 


•  is the distribution after all the noising up for period  until we end up to our 
prior distribution for our data generation process, i.e., 

xt+1 = xt + . . .

{x(t)}t∈[0,T] →

x(t) pt(x) pσi
(x)

p0(x) p0(x) = p(x)

pT(x) T
pT(x) = π(x)

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Perturbing data with noise from SDEs

• In score-matching the SDE is the generalisation of the finite scaling 


• In the discrete case perturb with a handpicked (geometric) progression of scales


• Now, noise scale controlled by SDE, where we (manually) select the governing SDE


• If , our Gaussian noise  grows exponentially with time 

σ0, . . . , σL

dx = etdw dw

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

What SDE?

• Noise-conditional score-matching (the discrete case)





• Another SDE that worked pretty well





• Might look scary but we merely need to pass it to our numerical solver

xi = xi−1 + σ2
i − σ2

i−1zi−1 ⇒ dx =
dσ2(t)

dt
dw

dx = −
1
2

β(t)x dt + β(t)(1 − exp(−2∫
t

0
β(s)ds))dw

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

From data to SDE noise

• We pick a sample  from , e.g., an image from our training set


• We add again and again noise until data looks like a standard Gaussian 


• We can always make noise from data


• Million dollar question: can we make data from noise (reverse process)?

x pdata(x)

π(x)

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

From reverse SDE noise to data

• For any SDE there is a reverse SDE with the reverse trajectories





• For the reverse SDE we need precisely the score function of 

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

pt(x)

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Learning the reverse SDE




• A neural network approximates the score function


• Take an initial sample from the prior distribution 


• Solve reverse SDE to get  till model matches data distribution 


• With  we have





• With perfect score-matching, matching the prior implies approximating data distribution

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

x(T) ∼ π(x)

x(t), ∀t ∈ (T,0] pθ ≈ p0

λ(t) = g2(t)

KL(p0(x)∥pθ(x))) ≤ 𝔼t∼𝒰(0,T)𝔼x∼pt(x)[ ∇xlog pt(x) − sθ(x)
2

2
]+KL(pT(x)∥π(x)))

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Time-dependent score-matching

• Train a neural network for score-matching that depends on time





where typically 


• Randomly sample time steps


• Then sample data from training set


• Then optimise your score matching approximation

𝔼t∈𝒰(0,T)𝔼pt(x)[λ(t) ∇xlog pt(x |x0) − sθ(x, t)
2

2]
λ(t) ∝ 1/𝔼[∥∇x(t)log p(x(t) |x(0))∥2

2]

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Solving the reverse SDE

• Once we have trained the score-matching function, we can solve the reverse SDE 
from the prior  all the way to our data distribution  to generate new data


• Solving means running numerical solver to compute the trajectory (like a decoder)





• We solve the SDE (getting the trajectory) for each new sample


• With better sampling procedures and architectures  SoTA generation

π p0

Δx ← [f(x, t) − g2(t)sθ(x, t)]Δt + g(t) |Δt | zt, zt ∼ 𝒩(0,I)

x ← x + Δx
t ← t + Δt

→

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Probability flow ODE

• With Langevin MCMC samplers and SDE solvers we can’t get exact log-likelihoods


• We can convert the SDE to a corresponding “probability flow” ODE without 
changing the marginal distributions 





• Solving the ODE, we get the exact log-likelihood

{pt(x)}t∈[0,T]

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt

http://uvadl2c.github.io


E. Gavves Score-matching & Diffusion Generative Models http://uvadl2c.github.io 

Qualitative examples

http://uvadl2c.github.io

